Réduction (2)

Les attentes

1. Savoir définir le polynéme minimal d’un endomorphisme d’un espace
de dimension finie, d’'une matrice carrée.

2. Si u(x) = Az, alors P(u)(x) = P(\)x.

3. Avoir compris qu'un polynéme annulateur de u (de A) sert a situer
les valeurs propres possibles de u (de A).

4. Que sont les valeurs propres de u par rapport a m, 7

5. Lemme de décomposition des noyaux.

6. Un endomorphisme est diagonalisable si, et seulement si, il admet un
polynome annulateur scindé a racines simples, si, et seulement si, son

@ polynéme minimal est scindé a racines simples. Version matricielle.

7. Un endomorphisme est trigonalisable si, et seulement si, il admet
un polynoéme annulateur scindé, si, et seulement si, son polyndéme
minimal est scindé. Version matricielle.

8. Théoréme de Cayley-Hamilton.

9. Sous-espaces caractéristiques d’un endomorphisme a polynoéme ca-
ractéristique scindé. Dimension d’un espace caractéristique.

10. E est somme directe des sous-espaces caractéristiques. Traduction
matricielle de cette décomposition : similitude a une matrice diago-
nale par blocs, chaque bloc diagonal étant triangulaire supérieur et
a termes diagonaux égaux.

1. (Notion qui sera vue dans le chapitre Anneaux) Pour u € Z(F),
morphisme d’algebres P — P(u) de K[X] dans Z(F). Le noyau
de ce morphisme est 1'idéal annulateur de u. Son image est la sous-
algebre commutative K[u] de Z(E).

2. Si d est le degré du polynéme minimal de u, alors (Id,u,...,u?"")

est une base de K[u].

3. Polynéme minimal d’'un endomorphisme induit. Diagonalisabilité
d’un endomorphisme induit par un endomorphisme diagonalisable.

Dans tout le chapitre, K désigne un sous-corps de C, qui en pratique sera R ou C. E est un K-espace
vectoriel.
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1 Polynoémes d’un endomorphisme, d’une matrice carrée

1.1 définitions
—[ Définition 1 }
Soit P =ag + a1 X + - -+ 4+ ap,XP un polynéme de K[X]. Soit u € Z(E). Soit A € M, (K).
1. On note P(u) 'endomorphisme P(u) = aoldg + a1u + - - - + apu? € Z(E).
2. On note P(A) la matrice P(A) = apln + a1 A+ - - + a, AP € M, (K).

On appelle polynome en u tout endomorphisme de la forme P(u) avec P € K[X]. L’ensemble des poly-
noémes en u est noté Klu).

On appelle polynome en A toute matrice de la forme P(A) avec P € K[X]. L’ensemble des polyndémes en
A est noté K[A].

Par exemple, lorsque P(X) = 7X? —2X + 3,
P(A) est la matrice :

P(u) est 'endomorphisme :

et pour z € E, P(u)(x) est le vecteur :

‘ AAtten‘cion a la lecture et aux parentheses! P(u)(z) désigne

Exercice 1 : Soit M € M,,(K) de coefficients diagonaux dy, ..., d, et P un polynéme de K[X].
1. Calculer P(M) lorsque M est une matrice diagonale.

2. Lorsque M est triangulaire supérieure, que dire de P(M)?

,_‘ Propriété 1 !
e Soit z € E, A € K. On suppose que u(z) = Az. Alors P(u)(z) = P(\)z.
o Soit X € M,,1(K). On suppose que AX = AX. Alors P(A)X = P(\)X.

Nous en verrons une utilité en propriété 4.

Remarque : lorsque F est de dimension finie, on passe facilement d’'un polynéme d’endomorphisme a
un polyndéme de matrice. Si B est une base de F, on a

matg(P(u)) = P(matg u)
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1.2 I’ensemble K[u]

,_| Propriété 2 !

e Soit u un endomorphisme de E. L’application

KX] — Z(F)
(P —  P(u) )

est un morphisme d’algebres, c’est-a-dire que :
(AP +Q)(u) = AP(u) + Q(u)  1(u) =Idp

P(u) o Qu) = (PQ)(u) = (QP)(u) = Q(u) o P(u)

L’image de ce morphisme est K|u] :

e Soit A € M, (K). L’application

—
—

M, (K) )
P(A)

est un morphisme d’algebres, c’est-a-dire que
(AP +Q)(A) =AP(A)+Q(4)  1(4) =1,

P(A) x Q(A) = (PQ)(A)
L’image de ce morphisme est K[A] = {P(A), P € K[X]}.

I
o
z
=
I
b
2
X
s
2

On retiendra en particulier que deux polynémes en u commutent, que deux polynémes en A commutent.
Par exemple, sans calculs :

(A2 A%)(I-A) = (I-A)(A+A%)  (f-Idg)o(f+21dg)o(f—31dE) = (f—31dg)o(f—1dg)o(f+21dg)

0 1

Exercice 2 : Expliciter R[M;], l'algebre engendrée par M; = (0 0

11
par My = (0 1).

Exercice 3 : Soient u € Z(F) et P € K[X]. Montrer que ker P(u) et Im P(u) sont des sous-espaces
vectoriels de E stables par u, et plus généralement sont stables par Q(u), ou @ € K[X].

), et R[My], 'algebre engendrée

1.3 lemme de décomposition des noyaux

,_[ Théoréme 1 — lemme de décomposition des noyaux - version 1 }

Si P; et P, sont deux polynémes de K[X| premiers entre eux, et si u € Z(F), on a :

ker(Py Py(u)) = ker(Pi(u)) @ ker(Pa(u))
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,_[ Théoréme 2 — lemme de décomposition des noyaux - version 2 ]

Si Pi,..., P, sont des polynémes de K[X] premiers entre eux deux & deux et de produit égal a P,
etsiue Z(E),ona:

ker(P(u)) = @ker(}_’i(u))
i=1

On rappelle que deux polyndémes sont premiers entre eux si, et seulement si, ils n’ont aucune racine
complexe en commun. Ainsi (X — a)” et (X — b)"™ sont premiers entre eux lorsque a # b.

Exercice 4 : Nous traitons I’exemple d’un projecteur et d’une symétrie d’un espace vectoriel E.

Exercice 5 : En introduisant u(f) = f’, déterminer I’ensemble des solutions réelles de I’équation dif-
férentielle y® — ¢ — 4/ — 2y = 0.

2 Polynémes annulateurs et applications

2.1 généralités

—[ Définition 2 }
e Soit u un endomorphisme de E. On appelle polynéme annulateur de u tout polynéme
P € K[X] tel que P(u) = 0 (g).

o Soit A € M, (K). On appelle polynéme annulateur de A tout polynéme P € K[X] tel que
P(A)=0.

L’ensemble des polynémes annulateurs de u est le noyau du morphisme d’algebres

K[X] — Z(F)
P —  P(u)

C’est un idéal de K[X], appelé idéal annulateur de u. Nous apprendrons ces notions au chapitre Anneaux.

r—[ Théoréme 3 }

Tout endomorphisme d’un espace vectoriel de dimension finie admet au moins un polynéme annu-
lateur non nul. Il y a méme une infinité de tels polynoémes.

Exercice 6 : Dans F = K[X], on considére u : P — X P. Montrer que u ne possede pas de polynéme
annulateur autre que le polynéme nul.

,_' Propriété 3 !

Si A et B sont deux matrices semblables alors A et B ont les mémes polynémes annulateurs.

\.

—[ Méthode — détermination de u ! ]

Si u admet un polynéme annulateur de terme constant non nul, alors on peut déterminer u =" et
u~! est un polyndme en u. On a un résultat similaire pour les matrices.
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Exercice 7 : Soit A € M,,(K) vérifiant A* — A% +7I = 0. Montrer que A est inversible et déterminer son
inverse.

2.2 utilité des polynémes annulateurs pour la réduction

,_‘ Propriété 4 ! .

Si P est un polyndéme annulateur de u et A une valeur propre de u, alors A est racine de P :

Sp(u) C { racines de P polynoéme annulateur de u }

Toutes les racines de P ne sont pas forcément valeurs propres de w.

\. J

Exercice 8 : Soit n un entier supérieur ou égal a 2 et f un endomorphisme de K" tel que (f —Id)"” = 0.
Sans calcul, déterminer ker f et Im f.

Exercice 9 :
E est un espace vectoriel de dimension finie et f est un endomorphisme de E satisfaisant : f2 = —f.

1. Situer les valeurs propres possibles de f.

2. Montrer que f est diagonalisable.

Exercice 10 : Soit n > 2, et A une matrice non nulle de M, (R). On considére ’endomorphisme f qui &
toute matrice de M,,(R) associe :

F(M) = Te(A)M — Tr(M)A

1. Montrer que f n’est pas ’endomorphisme nul.

2. (a) Déterminer un polynéme annulateur de f.
(b) Donner les valeurs propres possibles de f.

3. Montrer que 0 est valeur propre de f.
4. Montrer que, si Tr(A) = 0, alors f n’est pas diagonalisable.

5. On suppose dans cette question que la trace de A est non nulle. Montrer que f est diagonalisable.

r—[ Théoréme 4 }

e Soit u un endomorphisme d’un espace vectoriel de dimension finie.
u est diagonalisable si, et seulement si, u posséde un polyndéme annulateur scindé a racines
simples.

e Soit A une matrice carrée.
A est diagonalisable si, et seulement si, A posséde un polynéme annulateur scindé a racines
simples.

\. J

—[ Corollaire 1 }

Si u est diagonalisable, alors pour tout sous-espace vectoriel F' stable par u, ’endomorphisme
induit par u sur F' est diagonalisable.

Exercice 11 : Retrouver que les projecteurs et les symétries d’un espace vectoriel de dimension finie sont
diagonalisables.
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Exercice 12 : Soit M la matrice d’ordre n ne contenant que des 1. Donner un polynéme annulateur
de M et montrer que M est diagonalisable.

Exercice 13 : Montrer que A" est diagonalisable si, et seulement si, A est diagonalisable.
N’étes-vous pas en train de vous demander ou a disparu le polynéme caractéristique x4 = det(X I, — A)

sur lequel nous avions consacré tout le chapitre Réduction (1) 7 Il fait ici son grand retour! Dans un
théoreme admis, conformément au programme.

,_[ Théoreme 5 — théoreme de Cayley-Hamilton ]

Le polynéme caractéristique d’un endomorphisme en dimension finie (ou d’une matrice) est un
polyndéme annulateur. Autrement dit, si £ est de dimension finie,

Xu(u) = 02(E) xa(4) =0

Terminons par un résultat qui sera démontré plus loin (théoreme 7), quand nous aurons présenté la notion
de polynéme minimal. On rappelle qu'un polynéme scindé est non nul par définition.

Corollaire 2 ] ]

u est trigonalisable si, et seulement s’il possede un polynéme annulateur scindé.

3 Polynéme minimal et applications

3.1 généralités

Pour @ polynéme de K[X],
QK[X] =

Nous verrons au chapitre Anneaux que ’ensemble des polynémes annulateurs de ’endomorphisme u est
un idéal de K[X], et que les idéaux de K[ X] sont de la forme PyK[X] avec Py € K[X]. Enfin, nous verrons
que PK[X] = PK[X] si, et seulement si, Py et P; sont associés. Si Py et P; sont de plus supposés
unitaires, alors Py = P;.

,_[ Définition - propriété 1 ]

e Soit u un endomorphisme d’un espace vectoriel de dimension finie. L’idéal annulateur de u
admet un unique générateur unitaire appelé polynéme minimal de u, noté m,.

{P e K[X], P(u) = 0g(p)} = mu K[X]

o L’idéal annulateur de la matrice A admet un unique générateur unitaire appelé polynome
minimal de A, noté 4.
{P € K[X], P(A) = 0} = 74 K[X]
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P(u) = 0 si, et seulement si, m,|P, et P(A) = 0 si, et seulement si, m4|P. En particulier, le polynoéme
minimal divise le polyndéme caractéristique. On s’apercoit aussi que le polynéme minimal est minimal
en degré parmi les polynémes annulateurs non nuls de .

Autres remarques :

— Si A est la matrice de u dans la base B, alors m, = m4. Deux matrices semblables ont méme poly-
noéme minimal, égal au polynéme minimal de '’endomorphisme qu’elles représentent.

— En dimension infinie, 4 n’admet pas nécessairement de polynéme annulateur non nul, et donc pas
forcément de polynéme minimal.

— Si F est un sous-espace vectoriel stable par u, alors le polynéme minimal de ’endomorphisme induit
up divise celui de wu.
En effet,
Ve e F, mu(up)(r)=m,(u)(x)=0

et my , divise tous les polynomes annulateurs de up.

Exercice 14 : Déterminer le polynéme minimal de A = (_12 i)

Exercice 15 : Quel est le polynéme minimal d’'un endomorphisme nilpotent ?

00 —2
Exercice 16 : Déterminer le polynéme caractéristique puis le polynéme minimalde A= |1 0 1
01 2
,_' Propriété 5 l
Si d est le degré du polynéme minimal de u, alors la famille (Id,u,u?, ..., udil) est une base de
K[u].
Si d est le degré du polynéme minimal de A, alors la famille (1,,, A4, A%, ..., A1) est une base de
K[A].
On a

dimKfu] =d < dim E et dimK[A]=d<n

Méthode — décomposition de P(u) dans la base précédente

Soit u admettant un polynéme minimal de degré d. Pour P € K[X], on effectue la division eucli-

dienne de P par m, :
P = Qm, + R avec deg(R) < d

On a P(u) = R(u). Connaitre R permet donc de décomposer P(u) dans la base (Id, u, u?, ..., ud"1)
de Klu].
En prenant P = X*, on peut calculer les puissances de u.

3.2 utilité du polynéme minimal pour la réduction

,_' Propriété 6 !

Les valeurs propres de u (respectivement A) sont exactement les racines de son polynéme minimal.
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Une erreur classique consiste a croire qu’il suffit d’enlever les puissances du po

—

ynome

)

OO =

om
0 0
P . . . . 1 0
caractéristique pour obtenir le polynéme minimal. Par exemple, si A = 0 1
AN 002
par déterminant d’une matrice triangulaire, y4 = (X —1)?(X —2)2. Cependant, o
que (X —1)(X —2) n’annule pas A. On a en fait

P oo o

vérifie

ma= (X —1)(X —2)?

Exercice 17 (ces résultats rentreront plus loin dans le cadre du cours) : Soit A € M,,(K).

1. Montrer que si A est diagonalisable, alors m4 = [[ (X — \).
AESp A

2. Montrer que cela ne se généralise pas & A non diagonalisable.

0O 1 -1
Exercice 18 : Soit A= | =3 4 —3|. On admet que A? — 34 4 23 = 0.
-1 1 0

Montrer que (X —1)(X —2) est le polynéme minimal de A. En déduire les puissances de A, A™ pour n > 2.

—{ Théoreme 6 |

Un endomorphisme u est diagonalisable si, et seulement si, I'une des deux conditions suivantes est
vérifiée :

o Il existe un polynoéme scindé a racines simples annulant u.

e Le polynéme minimal de u est scindé a racines simples.

Le théoréme s’adapte pour une matrice.

Ce théoréeme montre que pour que A soit diagonalisable, m4 ne doit pas contenir de facteur de la
forme (X — \)® avec o > 1.

Exercice 19 (B.E.O.) :

0 2 -1
On considére la matrice A= | -1 3 —1] € M3(R).
-1 2 0

Montrer que A n’admet qu’une seule valeur propre que 'on déterminera.
La matrice A est-elle inversible 7 Est-elle diagonalisable ?

Déterminer, en justifiant, le polynéme minimal de A.

Ll

Soit n € N. Déterminer le reste de la division euclidienne de X™ par (X —1)? et en déduire la valeur
de A™.

Exercice 20 (oral Mines - Télécom) : Soit A € M,,(R) telle que A% est diagonalisable & valeurs propres
strictement positives. Montrer que A est diagonalisable.
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—[ Théoréme 7 }

Un endomorphisme u est trigonalisable si, et seulement si, 'une des trois conditions suivantes est
vérifiée :

e Il existe un polynoéme scindé annulant .
e Le polyndéme minimal de u est scindé.

e Le polyndéme caractéristique de u est scindé.

Le théoréme s’adapte pour une matrice.

4 Sous-espaces caractéristiques

Notre but est ici d’affiner la trigonalisation de u lorsque w est trigonalisable, ce qui est le cas lorsque x.,
(ou, de maniere équivalente, m,) est scindé.
Supposons pour cela y, scindé et écrivons-le sous la forme

Xu= (X —=A)™ (X =) ol A1,..., A sont les r valeurs propres distinctes de u

Les facteurs (X —\;)" étant premiers entre eux deux a deux, on peut appliquer le lemme de décomposition
des noyaux.
ker xu(u) = ker(u — A\ Id)"™ @ - - - @ ker(u — A, Id)™"

Par le théoreme de Cayley-Hamilton, x,(u) = 0. On a donc la décomposition de F :
E =ker(u— A 1d)™ & --- @ ker(u — A\, Id)™"

C’est une décomposition de F en somme directe de sous-espaces stables par u. Cette décomposition ne
requiert qu'une seule condition : le caractere scindé de y,. Cette condition est toujours vérifiée dans C.

—[ Définition 3 }

Soient u € Z(FE) de polynéme caractéristique scindé et A une valeur propre de u. On appelle
sous-espace caractéristique de u associé a la valeur propre A le sous-espace

ker((u — AIdg)™)

ou m est 'ordre de multiplicité de la valeur propre A dans .

,_' Propriété 7 !

Soit A € M,,(K) de polynéme caractéristique scindé. A est semblable & une matrice diagonale par
blocs ou chaque bloc diagonal est triangulaire supérieur a coefficients diagonaux égaux.
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,
Sixa= [1(X —X\)™, A est semblable a une matrice diagonale par blocs de la forme suivante.
i=1

A1 ()

©  n

,_[ Propriété 8 — dimension d’un sous-espace caractéristique }

On a dimker((u — AIdg)™) = m ou m est l'ordre de multiplicité de la valeur propre A dans xu.

5 Quelques applications pour terminer

La liste suivante des applications n’est certes pas exhaustive, mais vous permet de vous préparer a
quelques situations classiques.

5.1 calculs de puissances

— Par diagonalisation et A™ = PD"P~! (voir Réduction (1)).
— Disposant d’un polyndéme annulateur de A, on peut calculer le reste R,, dans la division euclidienne
de X™ par ce polynéme annulateur. On a A™ = R,,(A)

5.2 recherche d’un commutant

Voir chapitre Réduction (1).

5.3 équations différentielles

— Systeme différentiel et diagonalisation (chapitre Equations différentielles).

— Equations différentielles linéaires et lemme de décomposition des noyaux (voir exercice en page 4).

5.4 recherche de sous-espace vectoriel stables

o La droite Vect(e) est stable par u si et seulement si e est vecteur propre de u (vu au chapitre
Réduction (1)).

e Si u est diagonalisable, F' est stable par u si et seulement si F' possede une base formée de vecteurs
propres de u. (Ce résultat est a redémontrer si vous 'utilisez).
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6 Annexe : quelques éléments de démonstrations

Propriété 1
On considére un scalaire A et un vecteur z tels que u(z) = Az.
On remarque que v?(x) = u(u(z)) = u(Az) = du(z) = Az = A%z et on a I'idée de généraliser.

Soit Py, la propriété : « u”(z) = A*z » qu’on montre par récurrence pour k > 0.
e Onau’(z) =1Id(z) = z = 1.z = A’ donc Py est vraie.
e Supposons Py vraie pour un certain entier naturel k.

On a
W (2) = w@w®(z)) = u(\ z) (hypothése de récurrence)
= MNu(z) =M
Nty
Pr+1 est vraie, ce qui acheve la récurrence.
Soit Q(X) =ao+ a1 X +--+apX?. Ona:
Qu)(z) = (aold+aiu+ asu® + -+ apu’)(x)

aoz + aru(z) + - - - + apu’ ()

= a0x+a1)\m+a2)\2x+~~+ap>\px
(a0 + arh + ap\? + -+ ap )z
= QW)=

Propriété 2
Notons f: P — P(u).
Ona f(1) = IdE

Soient P = Z arX® et Q = Z b X", Quitte & adjoindre des coefficients nuls & P ou & Q, on peut supposer que g = p.
k=0
Pour A\, u € ]K on a:

FOP+uQ) = fO_ax+pub)X*) =" (A + pbg)u*
k=0

= AP+ uf(Q)

JPQ) = FO Y axbeX")= N arbe

0<k, £<p 0<k,£<p
F(P)of(Q) = Pu)o (Z W)
= ZbgP ) par linéarité de P(u)
= Zb;Zaku O Zbezaku
=0 k=0 =0 k=0
= f(PQ)

Donc f est bien un morphisme d’algebres.
Remarque importante : par ce morphisme, toute identité polynomiale se transpose aux endomorphismes. Par exemple,
X? 1= (X -1)(X +1) donne w?> —Idg = (u —Idg) o (u + Idg).

L’image d’un morphisme d’algebre est une sous-algébre de I’ensemble d’arrivée, donc K[u] est une sous-algebre de .Z(F). La
rédaction de la commutativité est faite dans I’énoncé de la propriété.

Si A est une sous-algebre de .Z(FE) contenant u alors par récurrence, u" € A pour tout n € N, puis
K[u] = Vect{u*, k € N} C A.
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Théoréme 1
Tout, ou presque, va reposer sur une identité de Bézout. Il existe A et B polynémes de K[X] tels que

AP, + BP, =1 puis A(u) o Py(u) + B(u) o P>(u) = 1d
e ker(Pi(u)) est un sous-espace vectoriel de ker(P1 P>(u)). En effet, si Pi(u)(z) = 0, alors
(P1Ps)(u) () = (P2P1)(u)(z) = (P2(u) o Pr(u))(z) = P2(u)(0p) = O

De méme, ker(P>(u)) est un sous-espace vectoriel de ker(Py P>(u)). Donc ker(Pi(u)) + ker(P2(u)) est un sous-espace
vectoriel de ker(Py Pz (u)).

e Soit z c ker(Plpg(u)).

On montre que x1 € ker P>(u) et x2 € ker Py (u).
A ce stade, ker(P1 P2 (u)) = ker(Py(u)) + ker(Ps(u)).

o Enfin, si z € ker(P1(u)) Nker(P2(u)), alors avec I'identité de Bézout,
z = A(u) o P1(u)(z) + B(u) o P2(u)(z) = A(u)(0) + B(u)(0) = 0

et la somme est directe.

Ce théoréme est valable sans hypothése sur la dimension de E. On aboutit, par récurrence, a la version 2.

Propriété 3
Par le calcul & partir de la relation de similitude B = Q *AQ.
Les matrices A et B représentent le méme endomorphisme u. Heureusement qu’elles ont les mémes polynémes annulateurs !

Propriété 4 concernant 1’utilité des polynémes annulateurs pour situer les valeurs propres
Soit P un polynéme annulateur de u.

Soit A € Sp(u). 1l existe = # 0 tel que u(z) = Az. Par la propriété 1, on a : P(u)(z) = P(A\)z.

Comme P(u) = 0 (g), on obtient : P(A)z = 0. Enfin, « # 0 donc P(X) =0 et A est une racine de P.

Théoreme 3

Comme F est de dimension n, dim . (E) = dim L(E, E) = dim E x dim E = n?.

La famille (Id, f, f2,.. .,f"2) comporte plus de vecteurs que la dimension de Z(F) : c’est une famille liée. Il existe des
scalaires (a:)ogicn2 non tous nuls tels que :

2
aold+arf +asf’ + -+ a2 f" = 0pm

2

Le polynéme P(X) = Z ar X" est un polyndme non nul annulateur de f.
k=0
Si P est un polynéme annulateur de f, pour tout polynéme @, les polynémes PQ et QP sont des polynémes annulateurs

de f. En effet :

(QP)(f) = (PQ)(f) (commutativité du produit dans R[z])
= P(f)oQ(f) (propriété des polynémes d’endomorphisme)
= 02m) oQ(f)
= Og@m)
Il s’ensuit qu’il existe une infinité de polynémes annulateurs de f.

Théoréme 4
e Supposons que u est diagonalisable. En notant A1,..., A, les valeurs propres de u, on a :

E=FE\ ®&- @ E\,

Soit P = (X —A1)...(X — \p). P est scindé a racines simples. On a P(u) = (u — A Idg) o...(u — A\pIdg). En tant que
polynémes en u, les endomorphismes u — A\; Idg commutent. Dés lors, on arrive & montrer que pour z; € Ex,, P(u)(z;) = 0.
La restriction de P(u) a chaque sous-espace propre est nulle. Par propriété (ou en réécrivant la décomposition de = € E
dans la somme directe), P(u) = 0.
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e Réciproquement, s’il existe un polynéme annulateur P de w scindé et & racines simples, avec le lemme de décompo-
sition des noyaux, on arrive & montrer que F = ker P(u) est somme directe (des) d’espaces propres de u. u est donc
diagonalisable.

Corollaire 1
Comme u est diagonalisable, u admet un polynéme P scindé & racines simples. On a encore P(ur) = 0. Donc par le méme
théoréme, ur est diagonalisable.

Propriété 5
Comprenons idée pour commencer. On introduit le polynéme minimal 7, de u, de degré d (avec d < dim F car 7, divise
Xu). On écrit
o =X%— (ad—le71 + -4+ a1X +ao)

et alors

uwl = aoldg +aru+ -+ + adflud_l
On compose par u application linéaire :

ud+1 = apu + a1u2 —+ -4 ad_lud

Mais u? est combinaison linéaire de Id, u, ...,u%" !, donc on obtient une expression
b 7 b b
d+1 d—1
u = boIdg +biu 4 -+ ba_1u

On peut répéter ce processus.

Démonstration : Commencons par montrer que K[u] = Vect(Id, v, ...,u%""). On a déja Iinclusion
Vect(Id, u, ..., u®™") C K[u].
Réciproquement, soit P € K[X]. Par division euclidienne, on peut écrire P = Qm,, + R avec deg R < d. On a alors

P(u) = Q(u) o mu(u) + R(u) = R(u) € Vect(Id, u, ..., u’"")
Ainsi K[u] C Vect(Id,u, ..., u?"!) puis Pégalité.

Montrons maintenant que la famille (Id, u, . .. ,udil) est libre. Supposons que ao Idg +a1u + -+ - 4+ ag_1u?™! = 0.
Pour P=ao+a1 X +---+ adledfl7 on a P(u) = 0. Comme deg P < degmy, on a P =0 puis ap = a1 = aqg—1 = 0.

Ainsi, la famille (Id, u, ...,u%"!) est libre et c’est donc une base de K[u).

Propriété 6
Comme 7, est un polynéme annulateur de u, Sp(u) C {racines de m}.
Soit A une racine de m,. Comme m,, divise Xx., A est aussi une valeur propre de x,. Nous avons appris au chapitre Réduction
(1) que Sp(u) = {racines de x.}. Donc X est valeur propre de u.
Remarque : il s’ensuit que le polyndome [[ (X — A) divise 7.
AESp(u)

Théoréme 6
Notons :

1. wu est diagonalisable
2. il existe P scindé a racines simples tel que P(u) =0

3. m, est scindé a racines simples.

(1) & (2) a été vu dans le théoréme 4.
(2) = (3) facile : my|P.
(3) = (2) facile car 7, (u) = 0.

Théoréme 7 comprenant le corollaire 2
Démonstration admise en classe. K est un sous-corps de C. Notons :

1. A est trigonalisable

2. xa est scindé

3. il existe P scindé dans K tel que P(A) =0
4

. ma est scindé dans K.

(1) & (2). On a montré cette équivalence au chapitre Réduction (1).
(2) (3). Par hypothese, le polynéme caractéristique x 4 est scindé, et il est annulateur par le théoréme de Cayley-Hamilton.

= (3
(3) = (4). ma|P

¢ Dernier point. Approche par les sous-espaces caractéristiques — je choisis cette approche
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Soit u ’endomorphisme de K" canoniquement associé & A. Supposons le polynome minimal 7, de u scindé dans K[X]. On

peut écrire

m
Tw = H(x — )
k=1
avec A1, ..., Am les valeurs propres distinctes de u. Par le lemme de décomposition des noyaux

E = @ker(u — A Idg)**

k=1

Soit F' = ker(u — A\ Idg)“*. L’espace F' est stable par u car u et (u — Ax Idg)** commutent.

On peut introduire ny = urp — Ay Idp € Z(F) et on a n® = 0. Ainsi up = Ay Idr +ni avec ny nilpotent.

Comme ny, est nilpotent, n; est trigonalisable et sa seule valeur propre est 0 (vu au chapitre Réduction (1)).

Il existe une base Bj dans laquelle la matrice de ny est triangulaire supérieure. En concaténant ces bases Bi,..., B, on

obtient une base de E dans laquelle la matrice de u est triangulaire supérieure. u est donc trigonalisable. Et A aussi.

Propriété 7

Treés semblable a la démonstration du théoréme 7. Démonstration faite en classe.

Propriété 8

Résulte de la démonstration de la propriété précédente.

Exercice classique sur la recherche de sous-espace vectoriel stables en page 10

(<) F = Vect(v1, . ..,vr), u(F) = Vect(u(vi), ..., u(v,)) = Vect(Av1, ..., A\pvr) C F.

(=) Par le cours, up est diagonalisable. Il existe une base de F' constituée de vecteurs propres de up : wi,...,w,. Les w;

sont dans F et ce sont des vecteurs propres de u.
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