
Réduction (2)

Les attentes

1. Savoir définir le polynôme minimal d’un endomorphisme d’un espace
de dimension finie, d’une matrice carrée.

2. Si u(x) = λx, alors P (u)(x) = P (λ)x.
3. Avoir compris qu’un polynôme annulateur de u (de A) sert à situer

les valeurs propres possibles de u (de A).
4. Que sont les valeurs propres de u par rapport à πu ?
5. Lemme de décomposition des noyaux.
6. Un endomorphisme est diagonalisable si, et seulement si, il admet un

polynôme annulateur scindé à racines simples, si, et seulement si, son
polynôme minimal est scindé à racines simples. Version matricielle.

7. Un endomorphisme est trigonalisable si, et seulement si, il admet
un polynôme annulateur scindé, si, et seulement si, son polynôme
minimal est scindé. Version matricielle.

8. Théorème de Cayley-Hamilton.
9. Sous-espaces caractéristiques d’un endomorphisme à polynôme ca-

ractéristique scindé. Dimension d’un espace caractéristique.
10. E est somme directe des sous-espaces caractéristiques. Traduction

matricielle de cette décomposition : similitude à une matrice diago-
nale par blocs, chaque bloc diagonal étant triangulaire supérieur et
à termes diagonaux égaux.

1. (Notion qui sera vue dans le chapitre Anneaux) Pour u ∈ L (E),
morphisme d’algèbres P 7→ P (u) de K[X] dans L (E). Le noyau
de ce morphisme est l’idéal annulateur de u. Son image est la sous-
algèbre commutative K[u] de L (E).

2. Si d est le degré du polynôme minimal de u, alors (Id, u, . . . , ud−1)
est une base de K[u].

3. Polynôme minimal d’un endomorphisme induit. Diagonalisabilité
d’un endomorphisme induit par un endomorphisme diagonalisable.

Dans tout le chapitre, K désigne un sous-corps de C, qui en pratique sera R ou C. E est un K-espace
vectoriel.
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1 Polynômes d’un endomorphisme, d’une matrice carrée

1.1 définitions
Définition 1

Soit P = a0 + a1X + · · · + apXp un polynôme de K[X]. Soit u ∈ L (E). Soit A ∈ Mn(K).
1. On note P (u) l’endomorphisme P (u) = a0IdE + a1u + · · · + apup ∈ L (E).
2. On note P (A) la matrice P (A) = a0In + a1A + · · · + apAp ∈ Mn(K).

On appelle polynôme en u tout endomorphisme de la forme P (u) avec P ∈ K[X]. L’ensemble des poly-
nômes en u est noté K[u].
On appelle polynôme en A toute matrice de la forme P (A) avec P ∈ K[X]. L’ensemble des polynômes en
A est noté K[A].

Par exemple, lorsque P (X) = 7X2 − 2X + 3,
P (A) est la matrice :

P (u) est l’endomorphisme :

et pour x ∈ E, P (u)(x) est le vecteur :

△! Attention à la lecture et aux parenthèses ! P (u)(x) désigne

Exercice 1 : Soit M ∈ Mn(K) de coefficients diagonaux d1, . . . , dn et P un polynôme de K[X].
1. Calculer P (M) lorsque M est une matrice diagonale.
2. Lorsque M est triangulaire supérieure, que dire de P (M) ?

Propriété 1

• Soit x ∈ E, λ ∈ K. On suppose que u(x) = λx. Alors P (u)(x) = P (λ)x.
• Soit X ∈ Mn,1(K). On suppose que AX = λX. Alors P (A)X = P (λ)X.

Nous en verrons une utilité en propriété 4.

Remarque : lorsque E est de dimension finie, on passe facilement d’un polynôme d’endomorphisme à
un polynôme de matrice. Si B est une base de E, on a

matB(P (u)) = P (matB u)
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1.2 l’ensemble K[u]

Propriété 2

• Soit u un endomorphisme de E. L’application(
K[X] −→ L (E)
P 7−→ P (u)

)

est un morphisme d’algèbres, c’est-à-dire que :

(λP + Q)(u) = λP (u) + Q(u) 1(u) = IdE

P (u) ◦ Q(u) = (PQ)(u) = (QP )(u) = Q(u) ◦ P (u)

L’image de ce morphisme est K[u] :

K[u] = {P (u), P ∈ K[X]}

• Soit A ∈ Mn(K). L’application (
K[X] −→ Mn(K)
P 7−→ P (A)

)

est un morphisme d’algèbres, c’est-à-dire que

(λP + Q)(A) = λP (A) + Q(A) 1(A) = In

P (A) × Q(A) = (PQ)(A) = (QP )(A) = Q(A) × P (A)

L’image de ce morphisme est K[A] = {P (A), P ∈ K[X]}.

On retiendra en particulier que deux polynômes en u commutent, que deux polynômes en A commutent.
Par exemple, sans calculs :

(A2+A3)(I−A) = (I−A)(A2+A3) (f−IdE)◦(f+2 IdE)◦(f−3 IdE) = (f−3 IdE)◦(f−IdE)◦(f+2 IdE)

Exercice 2 : Expliciter R[M1], l’algèbre engendrée par M1 =
(

0 1
0 0

)
, et R[M2], l’algèbre engendrée

par M2 =
(

1 1
0 1

)
.

Exercice 3 : Soient u ∈ L (E) et P ∈ K[X]. Montrer que ker P (u) et Im P (u) sont des sous-espaces
vectoriels de E stables par u, et plus généralement sont stables par Q(u), où Q ∈ K[X].

1.3 lemme de décomposition des noyaux

Théorème 1 – lemme de décomposition des noyaux - version 1

Si P1 et P2 sont deux polynômes de K[X] premiers entre eux, et si u ∈ L (E), on a :

ker(P1P2(u)) = ker(P1(u)) ⊕ ker(P2(u))
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Théorème 2 – lemme de décomposition des noyaux - version 2

Si P1, . . . , Pr sont des polynômes de K[X] premiers entre eux deux à deux et de produit égal à P ,
et si u ∈ L (E), on a :

ker(P (u)) =
r⊕

i=1
ker(Pi(u))

On rappelle que deux polynômes sont premiers entre eux si, et seulement si, ils n’ont aucune racine
complexe en commun. Ainsi (X − a)n et (X − b)m sont premiers entre eux lorsque a ̸= b.

Exercice 4 : Nous traitons l’exemple d’un projecteur et d’une symétrie d’un espace vectoriel E.

Exercice 5 : En introduisant u(f) = f ′, déterminer l’ensemble des solutions réelles de l’équation dif-
férentielle y(3) − y′′ − y′ − 2y = 0.

2 Polynômes annulateurs et applications

2.1 généralités

Définition 2
• Soit u un endomorphisme de E. On appelle polynôme annulateur de u tout polynôme

P ∈ K[X] tel que P (u) = 0L (E).
• Soit A ∈ Mn(K). On appelle polynôme annulateur de A tout polynôme P ∈ K[X] tel que

P (A) = 0.

L’ensemble des polynômes annulateurs de u est le noyau du morphisme d’algèbres(
K[X] −→ L (E)
P 7−→ P (u)

)

C’est un idéal de K[X], appelé idéal annulateur de u. Nous apprendrons ces notions au chapitre Anneaux.

Théorème 3
Tout endomorphisme d’un espace vectoriel de dimension finie admet au moins un polynôme annu-
lateur non nul. Il y a même une infinité de tels polynômes.

Exercice 6 : Dans E = K[X], on considère u : P 7→ XP . Montrer que u ne possède pas de polynôme
annulateur autre que le polynôme nul.

Propriété 3

Si A et B sont deux matrices semblables alors A et B ont les mêmes polynômes annulateurs.

Méthode – détermination de u−1

Si u admet un polynôme annulateur de terme constant non nul, alors on peut déterminer u−1 et
u−1 est un polynôme en u. On a un résultat similaire pour les matrices.
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Exercice 7 : Soit A ∈ Mn(K) vérifiant A4 − A2 + 7I = 0. Montrer que A est inversible et déterminer son
inverse.

2.2 utilité des polynômes annulateurs pour la réduction

Propriété 4

Si P est un polynôme annulateur de u et λ une valeur propre de u, alors λ est racine de P :

Sp(u) ⊂ { racines de P polynôme annulateur de u }

Toutes les racines de P ne sont pas forcément valeurs propres de u.

Exercice 8 : Soit n un entier supérieur ou égal à 2 et f un endomorphisme de Kn tel que (f − Id)n = 0.
Sans calcul, déterminer ker f et Im f .

Exercice 9 :
E est un espace vectoriel de dimension finie et f est un endomorphisme de E satisfaisant : f2 = −f .

1. Situer les valeurs propres possibles de f .
2. Montrer que f est diagonalisable.

Exercice 10 : Soit n ⩾ 2, et A une matrice non nulle de Mn(R). On considère l’endomorphisme f qui à
toute matrice de Mn(R) associe :

f(M) = Tr(A)M − Tr(M)A

1. Montrer que f n’est pas l’endomorphisme nul.
2. (a) Déterminer un polynôme annulateur de f .

(b) Donner les valeurs propres possibles de f .
3. Montrer que 0 est valeur propre de f .
4. Montrer que, si Tr(A) = 0, alors f n’est pas diagonalisable.
5. On suppose dans cette question que la trace de A est non nulle. Montrer que f est diagonalisable.

Théorème 4
• Soit u un endomorphisme d’un espace vectoriel de dimension finie.

u est diagonalisable si, et seulement si, u possède un polynôme annulateur scindé à racines
simples.

• Soit A une matrice carrée.
A est diagonalisable si, et seulement si, A possède un polynôme annulateur scindé à racines
simples.

Corollaire 1
Si u est diagonalisable, alors pour tout sous-espace vectoriel F stable par u, l’endomorphisme
induit par u sur F est diagonalisable.

Exercice 11 : Retrouver que les projecteurs et les symétries d’un espace vectoriel de dimension finie sont
diagonalisables.
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Exercice 12 : Soit M la matrice d’ordre n ne contenant que des 1. Donner un polynôme annulateur
de M et montrer que M est diagonalisable.

Exercice 13 : Montrer que A⊤ est diagonalisable si, et seulement si, A est diagonalisable.

N’êtes-vous pas en train de vous demander où a disparu le polynôme caractéristique χA = det(XIn − A)
sur lequel nous avions consacré tout le chapitre Réduction (1) ? Il fait ici son grand retour ! Dans un
théorème admis, conformément au programme.

Théorème 5 – théorème de Cayley-Hamilton

Le polynôme caractéristique d’un endomorphisme en dimension finie (ou d’une matrice) est un
polynôme annulateur. Autrement dit, si E est de dimension finie,

χu(u) = 0L (E) χA(A) = 0

Terminons par un résultat qui sera démontré plus loin (théorème 7), quand nous aurons présenté la notion
de polynôme minimal. On rappelle qu’un polynôme scindé est non nul par définition.

Corollaire 2
u est trigonalisable si, et seulement s’il possède un polynôme annulateur scindé.

3 Polynôme minimal et applications

3.1 généralités

Pour Q polynôme de K[X],

QK[X] =

Nous verrons au chapitre Anneaux que l’ensemble des polynômes annulateurs de l’endomorphisme u est
un idéal de K[X], et que les idéaux de K[X] sont de la forme P0K[X] avec P0 ∈ K[X]. Enfin, nous verrons
que P0K[X] = P1K[X] si, et seulement si, P0 et P1 sont associés. Si P0 et P1 sont de plus supposés
unitaires, alors P0 = P1.

Définition - propriété 1

• Soit u un endomorphisme d’un espace vectoriel de dimension finie. L’idéal annulateur de u
admet un unique générateur unitaire appelé polynôme minimal de u, noté πu.

{P ∈ K[X], P (u) = 0L (E)} = πu K[X]

• L’idéal annulateur de la matrice A admet un unique générateur unitaire appelé polynôme
minimal de A, noté πA.

{P ∈ K[X], P (A) = 0} = πA K[X]
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P (u) = 0 si, et seulement si, πu|P , et P (A) = 0 si, et seulement si, πA|P . En particulier, le polynôme
minimal divise le polynôme caractéristique. On s’aperçoit aussi que le polynôme minimal est minimal
en degré parmi les polynômes annulateurs non nuls de u.

Autres remarques :
— Si A est la matrice de u dans la base B, alors πu = πA. Deux matrices semblables ont même poly-

nôme minimal, égal au polynôme minimal de l’endomorphisme qu’elles représentent.

— En dimension infinie, u n’admet pas nécessairement de polynôme annulateur non nul, et donc pas
forcément de polynôme minimal.

— Si F est un sous-espace vectoriel stable par u, alors le polynôme minimal de l’endomorphisme induit
u|F divise celui de u.
En effet,

∀x ∈ F, πu(u|F )(x) = πu(u)(x) = 0

et πu|F
divise tous les polynômes annulateurs de u|F .

Exercice 14 : Déterminer le polynôme minimal de A =
(

1 1
−2 4

)
.

Exercice 15 : Quel est le polynôme minimal d’un endomorphisme nilpotent ?

Exercice 16 : Déterminer le polynôme caractéristique puis le polynôme minimal de A =

0 0 −2
1 0 1
0 1 2

.

Propriété 5

Si d est le degré du polynôme minimal de u, alors la famille (Id, u, u2, . . . , ud−1) est une base de
K[u].
Si d est le degré du polynôme minimal de A, alors la famille (In, A, A2, . . . , Ad−1) est une base de
K[A].
On a

dimK[u] = d ⩽ dim E et dimK[A] = d ⩽ n

Méthode – décomposition de P (u) dans la base précédente

Soit u admettant un polynôme minimal de degré d. Pour P ∈ K[X], on effectue la division eucli-
dienne de P par πu :

P = Qπu + R avec deg(R) < d

On a P (u) = R(u). Connaître R permet donc de décomposer P (u) dans la base (Id, u, u2, . . . , ud−1)
de K[u].
En prenant P = Xk, on peut calculer les puissances de u.

3.2 utilité du polynôme minimal pour la réduction

Propriété 6

Les valeurs propres de u (respectivement A) sont exactement les racines de son polynôme minimal.
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△!

Une erreur classique consiste à croire qu’il suffit d’enlever les puissances du polynôme

caractéristique pour obtenir le polynôme minimal. Par exemple, si A =


1 0 0 0
0 1 0 0
0 0 2 1
0 0 0 2

,

par déterminant d’une matrice triangulaire, χA = (X −1)2(X −2)2. Cependant, on vérifie
que (X − 1)(X − 2) n’annule pas A. On a en fait

πA = (X − 1)(X − 2)2

Exercice 17 (ces résultats rentreront plus loin dans le cadre du cours) : Soit A ∈ Mn(K).
1. Montrer que si A est diagonalisable, alors πA = ∏

λ∈Sp A
(X − λ).

2. Montrer que cela ne se généralise pas à A non diagonalisable.

Exercice 18 : Soit A =

 0 1 −1
−3 4 −3
−1 1 0

. On admet que A2 − 3A + 2I3 = 0.

Montrer que (X−1)(X−2) est le polynôme minimal de A. En déduire les puissances de A, An pour n ⩾ 2.

Théorème 6
Un endomorphisme u est diagonalisable si, et seulement si, l’une des deux conditions suivantes est
vérifiée :

• Il existe un polynôme scindé à racines simples annulant u.
• Le polynôme minimal de u est scindé à racines simples.

Le théorème s’adapte pour une matrice.

Ce théorème montre que pour que A soit diagonalisable, πA ne doit pas contenir de facteur de la
forme (X − λ)α avec α > 1.

Exercice 19 (B.E.O.) :

On considère la matrice A =

 0 2 −1
−1 3 −1
−1 2 0

 ∈ M3(R).

1. Montrer que A n’admet qu’une seule valeur propre que l’on déterminera.
2. La matrice A est-elle inversible ? Est-elle diagonalisable ?
3. Déterminer, en justifiant, le polynôme minimal de A.
4. Soit n ∈ N. Déterminer le reste de la division euclidienne de Xn par (X −1)2 et en déduire la valeur

de An.

Exercice 20 (oral Mines - Télécom) : Soit A ∈ Mn(R) telle que A2 est diagonalisable à valeurs propres
strictement positives. Montrer que A est diagonalisable.
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Théorème 7
Un endomorphisme u est trigonalisable si, et seulement si, l’une des trois conditions suivantes est
vérifiée :

• Il existe un polynôme scindé annulant u.
• Le polynôme minimal de u est scindé.
• Le polynôme caractéristique de u est scindé.

Le théorème s’adapte pour une matrice.

4 Sous-espaces caractéristiques
Notre but est ici d’affiner la trigonalisation de u lorsque u est trigonalisable, ce qui est le cas lorsque χu

(ou, de manière équivalente, πu) est scindé.
Supposons pour cela χu scindé et écrivons-le sous la forme

χu = (X − λ1)m1 . . . (X − λr)mr où λ1, . . . , λr sont les r valeurs propres distinctes de u

Les facteurs (X−λi)mi étant premiers entre eux deux à deux, on peut appliquer le lemme de décomposition
des noyaux.

ker χu(u) = ker(u − λ1 Id)m1 ⊕ · · · ⊕ ker(u − λr Id)mr

Par le théorème de Cayley-Hamilton, χu(u) = 0. On a donc la décomposition de E :

E = ker(u − λ1 Id)m1 ⊕ · · · ⊕ ker(u − λr Id)mr

C’est une décomposition de E en somme directe de sous-espaces stables par u. Cette décomposition ne
requiert qu’une seule condition : le caractère scindé de χu. Cette condition est toujours vérifiée dans C.

Définition 3

Soient u ∈ L (E) de polynôme caractéristique scindé et λ une valeur propre de u. On appelle
sous-espace caractéristique de u associé à la valeur propre λ le sous-espace

ker((u − λ IdE)m)

où m est l’ordre de multiplicité de la valeur propre λ dans χu.

Propriété 7

Soit A ∈ Mn(K) de polynôme caractéristique scindé. A est semblable à une matrice diagonale par
blocs où chaque bloc diagonal est triangulaire supérieur à coefficients diagonaux égaux.
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Si χA =
r∏

i=1
(X − λi)mi , A est semblable à une matrice diagonale par blocs de la forme suivante.



λ1 (∗)
. . .

(0) λ1


λ2 (∗)

. . .
(0) λ2


. . .

. . .
. . . λr (∗)

. . .
(0) λr




Propriété 8 – dimension d’un sous-espace caractéristique

On a dim ker((u − λ IdE)m) = m où m est l’ordre de multiplicité de la valeur propre λ dans χu.

5 Quelques applications pour terminer
La liste suivante des applications n’est certes pas exhaustive, mais vous permet de vous préparer à
quelques situations classiques.

5.1 calculs de puissances

— Par diagonalisation et An = PDnP −1 (voir Réduction (1)).
— Disposant d’un polynôme annulateur de A, on peut calculer le reste Rn dans la division euclidienne

de Xn par ce polynôme annulateur. On a An = Rn(A)

5.2 recherche d’un commutant

Voir chapitre Réduction (1).

5.3 équations différentielles

— Système différentiel et diagonalisation (chapitre Équations différentielles).
— Équations différentielles linéaires et lemme de décomposition des noyaux (voir exercice en page 4).

5.4 recherche de sous-espace vectoriel stables

• La droite Vect(e) est stable par u si et seulement si e est vecteur propre de u (vu au chapitre
Réduction (1)).

• Si u est diagonalisable, F est stable par u si et seulement si F possède une base formée de vecteurs
propres de u. (Ce résultat est à redémontrer si vous l’utilisez).
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6 Annexe : quelques éléments de démonstrations
Propriété 1
On considère un scalaire λ et un vecteur x tels que u(x) = λx.
On remarque que u2(x) = u(u(x)) = u(λx) = λu(x) = λ.λx = λ2x et on a l’idée de généraliser.

Soit Pk la propriété : « uk(x) = λkx » qu’on montre par récurrence pour k ⩾ 0.
• On a u0(x) = Id(x) = x = 1.x = λ0x donc P0 est vraie.
• Supposons Pk vraie pour un certain entier naturel k.
On a

uk+1(x) = u(uk(x)) = u(λkx) (hypothèse de récurrence)
= λku(x) = λk.λx

= λk+1x

Pk+1 est vraie, ce qui achève la récurrence.

Soit Q(X) = a0 + a1X + · · · + apXp. On a :

Q(u)(x) = (a0 Id +a1u + a2u2 + · · · + apup)(x)
= a0x + a1u(x) + · · · + apup(x)
= a0x + a1λx + a2λ2x + · · · + apλpx

= (a0 + a1λ + a2λ2 + · · · + apλp)x
= Q(λ)x

Propriété 2
Notons f : P 7→ P (u).
On a f(1) = IdE .

Soient P =
p∑

k=0
akXk et Q =

q∑
k=0

bkXk. Quitte à adjoindre des coefficients nuls à P ou à Q, on peut supposer que q = p.

Pour λ, µ ∈ K, on a :

f(λP + µQ) = f(
p∑

k=0

(λak + µbk)Xk) =
p∑

k=0

(λak + µbk)uk

= λ

p∑
k=0

akuk + µ

p∑
k=0

bkuk

= λf(P ) + µf(Q)

f(P Q) = f(
∑

0⩽k,ℓ⩽p

akbℓXk+ℓ) =
∑

0⩽k,ℓ⩽p

akbℓuk+ℓ

f(P ) ◦ f(Q) = P (u) ◦

(
p∑

ℓ=0

bℓuℓ

)

=
p∑

ℓ=0

bℓP (u) ◦ (uℓ) par linéarité de P (u)

=
p∑

ℓ=0

bℓ

p∑
k=0

akuk ◦ (uℓ) =
p∑

ℓ=0

bℓ

p∑
k=0

akuk+ℓ

= f(P Q)

Donc f est bien un morphisme d’algèbres.
Remarque importante : par ce morphisme, toute identité polynomiale se transpose aux endomorphismes. Par exemple,
X2 − 1 = (X − 1)(X + 1) donne u2 − IdE = (u − IdE) ◦ (u + IdE).

L’image d’un morphisme d’algèbre est une sous-algèbre de l’ensemble d’arrivée, donc K[u] est une sous-algèbre de L (E). La
rédaction de la commutativité est faite dans l’énoncé de la propriété.

Si A est une sous-algèbre de L (E) contenant u alors par récurrence, un ∈ A pour tout n ∈ N, puis
K[u] = Vect{uk, k ∈ N} ⊂ A.
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Théorème 1
Tout, ou presque, va reposer sur une identité de Bézout. Il existe A et B polynômes de K[X] tels que

AP1 + BP2 = 1 puis A(u) ◦ P1(u) + B(u) ◦ P2(u) = Id

• ker(P1(u)) est un sous-espace vectoriel de ker(P1P2(u)). En effet, si P1(u)(x) = 0, alors

(P1P2)(u)(x) = (P2P1)(u)(x) = (P2(u) ◦ P1(u))(x) = P2(u)(0E) = 0E

De même, ker(P2(u)) est un sous-espace vectoriel de ker(P1P2(u)). Donc ker(P1(u)) + ker(P2(u)) est un sous-espace
vectoriel de ker(P1P2(u)).

• Soit x ∈ ker(P1P2(u)).
x = Id(x) = [A(u) ◦ P1(u)](x)︸ ︷︷ ︸

=x1

+ [B(u) ◦ P2(u)](x)︸ ︷︷ ︸
=x2

On montre que x1 ∈ ker P2(u) et x2 ∈ ker P1(u).
À ce stade, ker(P1P2(u)) = ker(P1(u)) + ker(P2(u)).

• Enfin, si x ∈ ker(P1(u)) ∩ ker(P2(u)), alors avec l’identité de Bézout,

x = A(u) ◦ P1(u)(x) + B(u) ◦ P2(u)(x) = A(u)(0) + B(u)(0) = 0

et la somme est directe.

Ce théorème est valable sans hypothèse sur la dimension de E. On aboutit, par récurrence, à la version 2.

Propriété 3
Par le calcul à partir de la relation de similitude B = Q−1AQ.
Les matrices A et B représentent le même endomorphisme u. Heureusement qu’elles ont les mêmes polynômes annulateurs !

Propriété 4 concernant l’utilité des polynômes annulateurs pour situer les valeurs propres
Soit P un polynôme annulateur de u.
Soit λ ∈ Sp(u). Il existe x ̸= 0 tel que u(x) = λx. Par la propriété 1, on a : P (u)(x) = P (λ)x.
Comme P (u) = 0L (E), on obtient : P (λ)x = 0. Enfin, x ̸= 0 donc P (λ) = 0 et λ est une racine de P .

Théorème 3
Comme E est de dimension n, dim L (E) = dim L(E, E) = dim E × dim E = n2.
La famille (Id, f, f2, . . . , fn2 ) comporte plus de vecteurs que la dimension de L (E) : c’est une famille liée. Il existe des
scalaires (ai)0⩽i⩽n2 non tous nuls tels que :

a0 Id +a1f + a2f2 + · · · + an2 fn2
= 0L (E)

Le polynôme P (X) =
n2∑

k=0
akXk est un polynôme non nul annulateur de f .

Si P est un polynôme annulateur de f , pour tout polynôme Q, les polynômes P Q et QP sont des polynômes annulateurs
de f . En effet :

(QP )(f) = (P Q)(f) (commutativité du produit dans R[x])
= P (f) ◦ Q(f) (propriété des polynômes d’endomorphisme)
= 0L (E) ◦ Q(f)
= 0L (E)

Il s’ensuit qu’il existe une infinité de polynômes annulateurs de f .

Théorème 4
• Supposons que u est diagonalisable. En notant λ1, . . . , λp les valeurs propres de u, on a :

E = Eλ1 ⊕ · · · ⊕ Eλp

Soit P = (X − λ1) . . . (X − λp). P est scindé à racines simples. On a P (u) = (u − λ1 IdE) ◦ . . . (u − λp IdE). En tant que
polynômes en u, les endomorphismes u − λi IdE commutent. Dès lors, on arrive à montrer que pour xi ∈ Eλi , P (u)(xi) = 0.
La restriction de P (u) à chaque sous-espace propre est nulle. Par propriété (ou en réécrivant la décomposition de x ∈ E
dans la somme directe), P (u) = 0.
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• Réciproquement, s’il existe un polynôme annulateur P de u scindé et à racines simples, avec le lemme de décompo-
sition des noyaux, on arrive à montrer que E = ker P (u) est somme directe (des) d’espaces propres de u. u est donc
diagonalisable.

Corollaire 1
Comme u est diagonalisable, u admet un polynôme P scindé à racines simples. On a encore P (uF ) = 0. Donc par le même
théorème, uF est diagonalisable.

Propriété 5
Comprenons l’idée pour commencer. On introduit le polynôme minimal πu de u, de degré d (avec d ⩽ dim E car πu divise
χu). On écrit

πu = Xd − (ad−1Xd−1 + · · · + a1X + a0)
et alors

ud = a0 IdE +a1u + · · · + ad−1ud−1

On compose par u application linéaire :
ud+1 = a0u + a1u2 + · · · + ad−1ud

Mais ud est combinaison linéaire de Id, u, . . . , ud−1, donc on obtient une expression

ud+1 = b0 IdE +b1u + · · · + bd−1ud−1

On peut répéter ce processus.

Démonstration : Commençons par montrer que K[u] = Vect(Id, u, . . . , ud−1). On a déjà l’inclusion
Vect(Id, u, . . . , ud−1) ⊂ K[u].
Réciproquement, soit P ∈ K[X]. Par division euclidienne, on peut écrire P = Qπu + R avec deg R < d. On a alors

P (u) = Q(u) ◦ πu(u) + R(u) = R(u) ∈ Vect(Id, u, . . . , ud−1)

Ainsi K[u] ⊂ Vect(Id, u, . . . , ud−1) puis l’égalité.

Montrons maintenant que la famille (Id, u, . . . , ud−1) est libre. Supposons que a0 IdE +a1u + · · · + ad−1ud−1 = 0.
Pour P = a0 + a1X + · · · + ad−1Xd−1, on a P (u) = 0. Comme deg P < deg πu, on a P = 0 puis a0 = a1 = ad−1 = 0.
Ainsi, la famille (Id, u, . . . , ud−1) est libre et c’est donc une base de K[u].

Propriété 6
Comme πu est un polynôme annulateur de u, Sp(u) ⊂ {racines de πu}.
Soit λ une racine de πu. Comme πu divise χu, λ est aussi une valeur propre de χu. Nous avons appris au chapitre Réduction
(1) que Sp(u) = {racines de χu}. Donc λ est valeur propre de u.
Remarque : il s’ensuit que le polynôme

∏
λ∈Sp(u)

(X − λ) divise πu.

Théorème 6
Notons :

1. u est diagonalisable
2. il existe P scindé à racines simples tel que P (u) = 0
3. πu est scindé à racines simples.

(1) ⇔ (2) a été vu dans le théorème 4.
(2) ⇒ (3) facile : πu|P .
(3) ⇒ (2) facile car πu(u) = 0.

Théorème 7 comprenant le corollaire 2
Démonstration admise en classe. K est un sous-corps de C. Notons :

1. A est trigonalisable
2. χA est scindé
3. il existe P scindé dans K tel que P (A) = 0
4. πA est scindé dans K.

(1) ⇔ (2). On a montré cette équivalence au chapitre Réduction (1).
(2) ⇒ (3). Par hypothèse, le polynôme caractéristique χA est scindé, et il est annulateur par le théorème de Cayley-Hamilton.
(3) ⇒ (4). πA|P

• Dernier point. Approche par les sous-espaces caractéristiques – je choisis cette approche
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Soit u l’endomorphisme de Kn canoniquement associé à A. Supposons le polynôme minimal πu de u scindé dans K[X]. On
peut écrire

πu =
m∏

k=1

(X − λk)αk

avec λ1, . . . , λm les valeurs propres distinctes de u. Par le lemme de décomposition des noyaux

E =
m⊕

k=1

ker(u − λk IdE)αk

Soit F = ker(u − λk IdE)αk . L’espace F est stable par u car u et (u − λk IdE)αk commutent.
On peut introduire nk = uF − λk IdF ∈ L (F ) et on a nαk = 0. Ainsi uF = λk IdF +nk avec nk nilpotent.
Comme nk est nilpotent, nk est trigonalisable et sa seule valeur propre est 0 (vu au chapitre Réduction (1)).
Il existe une base Bk dans laquelle la matrice de nk est triangulaire supérieure. En concaténant ces bases B1, . . . , Bm, on
obtient une base de E dans laquelle la matrice de u est triangulaire supérieure. u est donc trigonalisable. Et A aussi.

Propriété 7
Très semblable à la démonstration du théorème 7. Démonstration faite en classe.

Propriété 8
Résulte de la démonstration de la propriété précédente.

Exercice classique sur la recherche de sous-espace vectoriel stables en page 10
(⇐) F = Vect(v1, . . . , vr), u(F ) = Vect(u(v1), . . . , u(vr)) = Vect(λ1v1, . . . , λrvr) ⊂ F .
(⇒) Par le cours, uF est diagonalisable. Il existe une base de F constituée de vecteurs propres de uF : w1, . . . , wr. Les wi

sont dans E et ce sont des vecteurs propres de u.
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