Programme des colles MP Semaine 3 : 30 septembre au 5 octobre 2024

1 Cours

Réduction (1) (révisions) : tout le chapitre.

Réduction (2): pages 1 à 8.

2 Méthodes, exercices

- Savoir utiliser un polynôme annulateur pour situer les valeurs propres.
- Dans des situations concrètes, savoir déterminer le polynôme caractéristique et le polynôme minimal.
- Calcul de A^n : selon les cas, il peut être adapté d'appliquer la formule du binôme, de diagonaliser A, de calculer le reste dans la division euclidienne de A par π_A .

3 Questions de cours

- 1. $A \in \mathcal{M}_n(\mathbf{K})$. Si $X \in \mathcal{M}_{n,1}(\mathbf{K})$ vérifie $AX = \lambda X$ alors pour P polynôme de $\mathbf{K}[X]$, $P(A)X = P(\lambda)X$. Dans le cas particulier où P est un polynôme annulateur de A, on a $\mathrm{Sp}(A) \subset \{\mathrm{racines\ de\ }P\}$. Un polynôme annulateur est donc utile pour situer les valeurs propres possibles. Il faut savoir adapter cette propriété à un endomorphisme u.
- 2. B.E.O. nº 68 sans les familles orthonormées (plusieurs façons de montrer qu'une matrice est diagonalisable) recopié ci-dessous.
- 3. B.E.O. nº 91 (polynôme minimal et calcul de A^n) recopié ci-dessous.

Exemples d'exercices (en plus, pas spécifiquement au programme des khôlles, pour indication)

B.E.O. n° 62, n° 65, n° 70, n° 88, n° 93.

Énoncé exercice 68 Soit la matrice $A = \begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix}$. Démontrer que A est diagonalisable de quatre

manières:

- 1. sans calcul,
- 2. en calculant directement le déterminant $\det(\lambda I_3 A)$, où I_3 est la matrice identité d'ordre 3, et en déterminant les sous-espaces propres,

1

- 3. en utilisant le rang de la matrice,
- 4. en calculant A^2 .

Corrigé exercice 68

- 1. La matrice A est symétrique réelle donc diagonalisable.
- 2. On obtient $\chi_M(\lambda) = \det(\lambda I_3 A) = \lambda^2(\lambda 3)$.

$$E_3(A) = \operatorname{Vect}\left(\begin{pmatrix} 1\\-1\\1 \end{pmatrix}\right) \text{ et } E_0(A): x - y + z = 0.$$

Donc A est diagonalisable car dim $E_3(A) + \dim E_0(A) = 3$.

3. $rgA = 1 \text{ donc } dim E_0(A) = 2.$

On en déduit que l'ordre de multiplicité de 0 dans le polynôme χ_A vaut au moins $2: X^2$ divise χ_A . Comme χ_A est de degré 3 et est unitaire, il existe c réel tel que $\chi_A = X^2(X-c)$. Par le cours, $\chi_A = X^3 - \text{Tr}(A)X^2 + (\text{termes de degré au plus 1})$. Donc $\chi_A = X^2(X - \text{Tr}(A)) = X^2(X-3)$. Les valeurs propres de A sont 0 et 3. Comme 3 est d'ordre de multiplicité 1, le cours assure dim $E_3(3) = 1$. On a donc dim $E_3(A) + \dim E_0(A) = 3$ et A est diagonalisable.

4. On obtient $A^2=3A$. Le polynôme $P=X^2-3X$ est un polynôme annulateur de A. Comme $P=X(X-3),\,P$ est scindé à racines simples. A est diagonalisable.

Énoncé exercice 91

On considère la matrice $A = \begin{pmatrix} 0 & 2 & -1 \\ -1 & 3 & -1 \\ -1 & 2 & 0 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R}).$

- 1. Montrer que A n'admet qu'une seule valeur propre que l'on déterminera.
- 2. La matrice A est-elle inversible? Est-elle diagonalisable?
- 3. Déterminer, en justifiant, le polynôme minimal de A.
- 4. Soit $n \in \mathbb{N}$. Déterminer le reste de la division euclidienne de X^n par $(X-1)^2$ et en déduire la valeur de A^n .

Corrigé exercice 91

1. Déterminons le polynôme caractéristique χ_A de A :

$$\chi_{A}(\lambda) = \begin{vmatrix} \lambda & -2 & 1 \\ 1 & \lambda - 3 & 1 \\ 1 & -2 & \lambda \end{vmatrix} = \begin{vmatrix} \lambda - 1 & -2 & 1 \\ \lambda - 1 & \lambda - 3 & 1 \\ \lambda - 1 & -2 & \lambda \end{vmatrix} \\
= (\lambda - 1) \begin{vmatrix} 1 & -2 & 1 \\ 1 & \lambda - 3 & 1 \\ 1 & -2 & \lambda \end{vmatrix} = (\lambda - 1) \begin{vmatrix} 1 & -2 & 1 \\ 0 & \lambda - 1 & 0 \\ 0 & 0 & \lambda - 1 \end{vmatrix} \\
= (\lambda - 1)^{3}$$

Donc $\chi_A = (X - 1)^3$.

Donc A admet 1 comme unique valeur propre.

- 2. Puisque 0 n'est pas valeur propre de A, A est inversible. Si A était diagonalisable, il existerait P inversible telle que $A = PI_3P^{-1}$ et A vaudrait I_3 . Puisque ce n'est pas le cas, A n'est pas diagonalisable.
- 3. Notons π_A le polynôme minimal de A.

 π_A divise χ_A et π_A est un polynôme annulateur de A.

$$A - I_3 \neq 0 \text{ et } (A - I_3)^2 = \begin{pmatrix} -1 & 2 & -1 \\ -1 & 2 & -1 \\ -1 & 2 & -1 \end{pmatrix} \begin{pmatrix} -1 & 2 & -1 \\ -1 & 2 & -1 \\ -1 & 2 & -1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Donc $\pi_A = (X - 1)^2$.

4. Soit $n \in \mathbb{N}$. Par division euclidienne de X^n par $(X-1)^2$,

$$\exists ! (Q, R) \in \mathbb{R}[X] \times \mathbb{R}_1[X], X^n = (X - 1)^2 Q + R$$
 (1)

Or,
$$\exists (a, b) \in \mathbb{R}^2$$
, $R = aX + b \text{ donc } X^n = (X - 1)^2 Q + aX + b$.

Puisque 1 est racine double de $(X-1)^2$ on obtient : 1=a+b et, après dérivation, n=a. Donc R=nX+1-n. (2)

 $\pi_A = (X-1)^2$ étant un polynôme annulateur de A on a d'après (1) et (2) :

$$\forall n \in \mathbb{N}, A^n = nA + (1-n)I_3$$